Tuesday 12 March 2013

Protactinium

Protactinium


Protactinium is a chemical element with the symbol Pa and atomic number 91. It is a dense, silvery-gray metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds where protactinium is usually present in the oxidation state +5, but can also assume +4 and even +2 or +3 states. The average concentrations of protactinium in the Earth's crust is typically on the order of a few parts per trillion, but may reach up to a few parts per million in some uraninite ore deposits. Because of its scarcity, high radioactivity and high toxicity, there are currently no uses for protactinium outside of scientific research, and for this purpose, protactinium is mostly extracted from spent nuclear fuel.

Protactinium was first identified in 1913 by Kasimir Fajans and Oswald Helmuth Göhring and named brevium because of the short half-life of the specific isotope studied, namely protactinium-234. A more stable isotope (231Pa) of protactinium was discovered in 1917/18 by Otto Hahn and Lise Meitner, and they chose the name proto-actinium, but then the IUPAC named it finally protactinium in 1949 and confirmed Hahn and Meitner as discoverers. The new name meant "parent of actinium" and reflected the fact that actinium is a product of radioactive decay of protactinium.

The longest-lived and most abundant (nearly 100%) naturally occurring isotope of protactinium, protactinium-231, has a half-life of 32,760 years and is a decay product of uranium-235. Much smaller trace amounts of the short-lived nuclear isomer protactinium-234m occur in the decay chain of uranium-238. Protactinium-233 results from the decay of thorium-233 as part of the chain of events used to produce uranium-233 by neutron irradiation of thorium-232. It is an undesired intermediate product in thorium-based nuclear reactors and is therefore removed from the active zone of the reactor during the breeding process. Analysis of the relative concentrations of various uranium, thorium and protactinium isotopes in water and minerals is used in radiometric dating of sediments which are up to 175,000 years old and in modeling of various geological processes.

Occurrence


Protactinium is one of the rarest and most expensive naturally occurring elements. It is found in the form of two isotopes – 231Pa and 234Pa, with the isotope 234Pa occurring in two different energy states. Nearly all natural protactinium is protactinium-231. It is an alpha emitter and is formed by the decay of uranium-235, whereas the beta radiating protactinium-234 is produced as a result of uranium-238 decay. Nearly all uranium-238 (99.8%) decays first to the 234mPa isomer.

Protactinium occurs in uraninite (pitchblende) at concentrations of about 0.3-3 parts 231Pa per million parts (ppm) of ore. Whereas the usual content is closer to 0.3 ppm , some ores from the Democratic Republic of the Congo have about 3 ppm. Protactinium is homogeneously dispersed in most natural materials and in water, but at much lower concentrations on the order of one part per trillion, that corresponds to the radioactivity of 0.1 picocuries (pCi)/g. There is about 500 times more protactinium in sandy soil particles than in water, even the water present in the same sample of soil. Much higher ratios of 2,000 and above are measured in loam soils and clays, such as bentonite.

In nuclear reactors

Two major protactinium isotopes, 231Pa and 233Pa, are produced from thorium in nuclear reactors; both are undesirable and are usually removed, thereby adding complexity to the reactor design and operation. In particular, 232Th via (n,2n) reactions produces 231Th which quickly (half-life 25.5 hours) decays to 231Pa. The last isotope, while not a transuranic waste, has a long half-life of 32,760 years and is a major contributor to the long term radiotoxicity of spent nuclear fuel.

Protactinium-233 is formed upon neutron capture by 232Th. It further either decays to uranium-233 or captures another neutron and converts into the non-fissile uranium-234. 233Pa has a relatively long half-life of 27 days and high cross section for neutron capture (the so-called "neutron poison"). Thus instead of rapidly decaying to the useful 233U, a significant fraction of 233Pa converts to non-fissile isotopes and consumes neutrons, degrading the reactor efficiency. To avoid this, 233Pa is extracted from the active zone of thorium molten salt reactors, during their operation, so that it only decays to 233U. This is achieved using several meters tall columns of molten bismuth with lithium dissolved in it. In a simplified scenario, lithium selectively reduces protactinium salts to protactinium metal which is then extracted from the molten-salt cycle, and bismuth is merely a carrier. It is chosen because of its low melting point (271 °C), low vapor pressure, good solubility for lithium and actinides, and immiscibility with molten halides.

SymbolPa
Atomic Number91
Atomic Weight231.03588
Oxidation States+4, +5
Electronegativity, Pauling1.38
State at RTSolid, Metal
Melting Point, K2113
Boiling Point, K4300



Appearance and Characteristics

Harmful effects:

Protactinium is harmful due to its radioactivity and is also toxic.

Characteristics:

  • Protactinium is a very rare shiny, silvery, highly radioactive metal that tarnishes slowly in air to the oxide.
  • Almost all naturally occurring protactinium is the 231 isotope. It emits alpha radiation and is produced through the decay of uranium-235.
  • Protactinium is one of the rarest and most expensive naturally occurring elements.
  • The largest amount of protactinium obtained so far has been 125 grams in 1961 from the Great Britain Atomic Energy Authority. The extraction was made from 60 tons of nuclear waste material. (5)

Uses of Protactinium

  • Protactinium is used mainly for research purposes.
  • Protactinium-231 combined with the thorium-230 can be used to date marine sediments.